Heat production and oxygen consumption during metabolic recovery of white muscle fibres from the dogfish Scyliorhinus canicula.
نویسندگان
چکیده
Oxygen consumption and heat production were measured during contraction and recovery of isolated, white muscle fibres from dogfish (Scyliorhinus canicula) at 19 degrees C. The contraction period consisted of 20 isometric twitches at 3 Hz; this was followed by a recovery period of 2 h without stimulation. We tested the hypothesis that recovery is wholly oxidative (not glycolytic) in these fibres. The following features support this hypothesis. (i) The ratio of total heat produced to oxygen consumed, 451+/-34 kJ mol(-)(1) (mean +/- s.e.m., N=29), was close to that expected for either the oxidation of carbohydrate, 473 kJ mol(-)(1), or the oxidation of fat, 439 kJ mol(-)(1). Even assuming the maximum value (95 % confidence limit) of the observed heat production, glycolysis could account for resynthesis of at most 18 % of the ATP used during the contractions. (ii) When the difference in rates of diffusion of oxygen and heat within the muscle are taken into account, the time courses of oxygen consumption and heat production match each other well during the entire recovery period. The efficiency of recovery (=energy used for ATP synthesis/energy available for ATP synthesis) was estimated from the results. This value, 84.0+/-20.1 % (mean +/- s.e.m., N=29), is relatively high and represents the first such measurement in functioning muscle.
منابع مشابه
The energetic cost of activation of white muscle fibres from the dogfish Scyliorhinus canicula
The energetic cost of activation was measured during an isometric tetanus of white muscle fibres from the dogfish Scyliorhinus canicula. The total heat production by the fibres was taken as a measure of the total energetic cost. This energy consists of two parts. One is due to crossbridge interaction which produces isometric force, and this part varies linearly with the degree of filament overl...
متن کاملEfficiency of energy conversion during shortening of muscle fibres from the dogfish Scyliorhinus canicula.
Force and heat production were measured during isovelocity shortening of tetanized white myotomal muscle fibres from the dogfish at 12 degrees C. For each fibre preparation a range of velocities was used. Mechanical power was calculated from force X velocity of shortening. The rate of total energy output during shortening was evaluated as the sum of mechanical power and the rate of heat product...
متن کاملElastic energy storage and release in white muscle from dogfish scyliorhinus canicula
The production of work by the contractile component (CC) and the storage and release of work in the elastic structures that act in series (the series elastic component, SEC) with the contractile component were measured using white muscle fibres from the dogfish Scyliorhinus canicula. Heat production was also measured because the sum of work and heat is equivalent to the energy cost of the contr...
متن کاملSustained performance by red and white muscle fibres from the dogfish Scyliorhinus canicula.
The mechanical performance of red and white muscle fibres from dogfish was compared during a long series of contractions with sinusoidal movement or under isometric conditions at 12 degrees C (normal in vivo temperature). Power output was measured during sinusoidal movement at 0.75 Hz and peak-to-peak amplitude about 12% L(0). Tetanus duty cycle was 33% (0.44 s) at phase -8% (first stimulus at ...
متن کاملPower at the expense of efficiency in contraction of white muscle fibres from dogfish Scyliorhinus canicula
Work and heat production of white myotomal muscle fibres from dogfish were measured during sinusoidal movement (0.71-5.0 Hz) at 12 C. Stimulus phase (stimulus timing relative to movement) and duty cycle (stimulus duration as a fraction of movement cycle duration) were varied to determine the parameters optimal for power output and for efficiency (work/total energy output). Movements of 0.067 an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of experimental biology
دوره 203 Pt 7 شماره
صفحات -
تاریخ انتشار 2000